30,277 research outputs found

    Enhanced Raman scattering from vertical silicon nanowires array

    Get PDF
    We fabricated ordered hexagonal-packed vertical silicon nanowire (SiNW) arrays with varying diameters of 450-900 nm and varying lengths of 0.54-7.3 μm, and studied their Raman enhancement properties. We found the Raman enhancement per unit volume (REV) increased with decreasing wire diameters and oscillated with wire length, and the REV of seven 450-nm-diameter, 3-μm -long SiNWs was about twice that of a single SiNW having the same size. The differences were attributed to the vertical finite-length cylinder structures of the SiNW array, as supported by finite-difference-time-domain simulation results based on the helical resonant surface wave model. © 2011 American Institute of Physics.published_or_final_versio

    k-Same-Siamese-GAN: k-Same Algorithm with Generative Adversarial Network for Facial Image De-identification with Hyperparameter Tuning and Mixed Precision Training

    Full text link
    For a data holder, such as a hospital or a government entity, who has a privately held collection of personal data, in which the revealing and/or processing of the personal identifiable data is restricted and prohibited by law. Then, "how can we ensure the data holder does conceal the identity of each individual in the imagery of personal data while still preserving certain useful aspects of the data after de-identification?" becomes a challenge issue. In this work, we propose an approach towards high-resolution facial image de-identification, called k-Same-Siamese-GAN, which leverages the k-Same-Anonymity mechanism, the Generative Adversarial Network, and the hyperparameter tuning methods. Moreover, to speed up model training and reduce memory consumption, the mixed precision training technique is also applied to make kSS-GAN provide guarantees regarding privacy protection on close-form identities and be trained much more efficiently as well. Finally, to validate its applicability, the proposed work has been applied to actual datasets - RafD and CelebA for performance testing. Besides protecting privacy of high-resolution facial images, the proposed system is also justified for its ability in automating parameter tuning and breaking through the limitation of the number of adjustable parameters

    Multi-gigabit microwave and millimeter-wave communications research at CSIRO

    Full text link
    © 2014 IEEE. High speed and long range wireless backhauls are cost-effective alternatives to fibre networks and becoming more and more attractive as the demand for broadband wireless services grows rapidly in recent years. However, current commercially available wireless backhaul systems neither provide sufficiently high speed nor meet the requirements to achieve both high speed and long range at the same time with sufficiently low latency for targeted applications. Traditional microwave systems can achieve long transmission range, but the data rates are limited to a few hundred Mega bits per second only. Multi-Gigabit wireless communications can be achieved using millimetre-wave (mm-wave) frequency bands, especially the E-bands, but the practical transmission range is still a major weakness. In this paper, the state-of-the-art microwave and mm-wave technologies developed at the Commonwealth Scientific and Industrial Research Organization (CSIRO) are introduced to demonstrate CSIRO's technology leadership in multi-Gigabit wireless communications research and development. The technology trends in multi-Gigabit wireless communications are also discussed and various recently developed microwave and mm-wave systems are compared. It is hoped that this paper will stimulate further research interest and industry development

    Joint transmitter and receiver I/Q imbalance estimation in presence of carrier frequency offset

    Full text link
    © 2015 IEEE. This paper proposes a simple frequency domain joint transmitter and receiver I/Q imbalance estimation method which exploits the phase rotation introduced by carrier frequency offset. Using two frequency domain training sequences inserted in each transmission frame, the transmitter and receiver I/Q imbalances can be jointly estimated over multiple frames. The transmitter I/Q imbalance parameter can be fed back to the transmitter for I/Q imbalance pre-compensation, whereas the receiver I/Q imbalance can be compensated locally followed by conventional frequency domain equalization. Numerical simulation results show that the image rejection ratios for both transmitter and receiver after I/Q imbalance compensation can be improved to over 50 dB which is necessary for multichannel systems with high order modulation and wide transmission bandwidth

    Explicit flock solutions for Quasi-Morse potentials

    No full text
    We consider interacting particle systems and their mean-field limits, which are frequently used to model collective aggregation and are known to demonstrate a rich variety of pattern formations. The interaction is based on a pairwise potential combining short-range repulsion and long-range attraction. We study particular solutions, that are referred to as flocks in the second-order models, for the specific choice of the Quasi-Morse interaction potential. Our main result is a rigorous analysis of continuous, compactly supported flock profiles for the biologically relevant parameter regime. Existence and uniqueness is proven for three space dimension, whilst existence is shown for the two-dimensional case. Furthermore, we numerically investigate additional Morse-like interactions to complete the understanding of this class of potentials.Comment: 26 page

    Unified out-of-band emission reduction with linear complexity for OFDM

    Full text link
    © 2014 IEEE. This paper proposes a unified out-of-band emission (OOBE) reduction framework with linear complexity for orthogonal frequency-division multiplexing (OFDM) systems. Unlike conventional spectral precoding approaches which use orthogonal precoding matrixes, this framework composes cancellation signals from the linear combinations of data symbols and minimizes the average OOBE power with a general least-squares solution. A joint frequency domain cancellation subcarrier and data domain cancellation symbol allocation scheme is also proposed for discrete Fourier transform precoded OFDM, by which the overall signal processing complexity of the OFDM transceiver is further reduced without impact on other system performance. The advantages of the proposed scheme is verified both analytically and by simulation as compared with some well-known low-complexity OOBE reduction schemes

    Conformational States of Cytochrome P450 Oxidoreductase Evaluated by Förster Resonance Energy Transfer Using Ultrafast Transient Absorption Spectroscopy

    Get PDF
    NADPH-cytochrome P450 oxidoreductase (CYPOR) was shown to undergo large conformational rearrangements in its functional cycle. Using a new Förster resonance energy transfer (FRET) approach based on femtosecond transient absorption spectroscopy (TA), we determined the donor–acceptor distance distribution in the reduced and oxidized states of CYPOR. The unmatched time resolution of TA allowed the quantitative assessment of the donor–acceptor FRET, indicating that CYPOR assumes a closed conformation in both reduced and oxidized states in the absence of the redox partner. The described ultrafast TA measurements of FRET with readily available red–infrared fluorescent labels open new opportunities for structural studies in chromophore-rich proteins and their complexes

    Massive hybrid antenna array for millimeter-wave cellular communications

    Full text link
    © 2002-2012 IEEE. A massive hybrid array consists of multiple analog subarrays, with each subarray having its digital processing chain. It offers the potential advantage of balancing cost and performance for massive arrays and therefore serves as an attractive solution for future millimeter-wave (mm- Wave) cellular communications. On one hand, using beamforming analog subarrays such as phased arrays, the hybrid configuration can effectively collect or distribute signal energy in sparse mm-Wave channels. On the other hand, multiple digital chains in the configuration provide multiplexing capability and more beamforming flexibility to the system. In this article, we discuss several important issues and the state-of-the-art development for mm-Wave hybrid arrays, such as channel modeling, capacity characterization, applications of various smart antenna techniques for single-user and multiuser communications, and practical hardware design. We investigate how the hybrid array architecture and special mm-Wave channel property can be exploited to design suboptimal but practical massive antenna array schemes. We also compare two main types of hybrid arrays, interleaved and localized arrays, and recommend that the localized array is a better option in terms of overall performance and hardware feasibility
    • …
    corecore